16t^2+36t=-10

Simple and best practice solution for 16t^2+36t=-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t^2+36t=-10 equation:



16t^2+36t=-10
We move all terms to the left:
16t^2+36t-(-10)=0
We add all the numbers together, and all the variables
16t^2+36t+10=0
a = 16; b = 36; c = +10;
Δ = b2-4ac
Δ = 362-4·16·10
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{41}}{2*16}=\frac{-36-4\sqrt{41}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{41}}{2*16}=\frac{-36+4\sqrt{41}}{32} $

See similar equations:

| 0=16t^2+36t+10 | | 2(8 | | 2(8 | | 2(8 | | 5-y/6=2 | | (x+19)/9=0 | | 3p-18=23 | | 6x^2−7x−5=0 | | Y=22-2x1 | | 3/4(2x+4)=x+1 | | -0.5d=65 | | 3(5-1/6x)+1/8(32+6x)+7.3x-5(0.005x)x=10 | | 20+4=-8x=4x | | 1/2(4-6x)+12(x-7)=8 | | (5+3x)4-2(2x+8)=4 | | (-4)^n=0.5 | | 44^x+2+2^2x+3=96 | | t+1.25=5.75t= | | 2(1-x)=-6x+5(x-2) | | 8(1-3x)=5(3-5x) | | 1+y=15 | | Y=8-2x/5 | | 3x+8-2=30 | | 2^x+1+2^x-1=320 | | 4x-9=6-1 | | 4x-9=6x1 | | 7x-20=4x+8 | | 3x-(2x+4)=5x-4 | | -7g=-5(2g-3) | | 2x-(2x+4)=5x-4 | | 9x6=3x+18 | | X^2+(10-x)^2=68 |

Equations solver categories